
ToDonePy
Release 4.0.9

Ryan B Patterson-Cross

Sep 17, 2020

CONTENTS:

1 ToDonePY - A basic command-line tast manager 1

2 ToDonePy command-line interface (CLI) 7

3 ToDonePy Helpers 11

4 Testing 15

5 For contributors 17

6 Indices and tables 19

Python Module Index 21

Index 23

i

ii

CHAPTER

ONE

TODONEPY - A BASIC COMMAND-LINE TAST MANAGER

1.1 Introduction

Move your ToDo’s to ToDone’s!

ToDonePy is a command-line interface for managing your to do list. It provides a root command, to, and three
subcommands:

• to do adds a new task to your list at different priorities.

• to doing shows you what you should be doing.

• to done removes a completed tast from your list.

1.2 Docs and Code

The documentation lives at https://ToDonePy.readthedocs.io/ .

The code lives at https://github.com/rbpatt2019/ToDonePy/ .

1

https://www.repostatus.org/#active
https://www.gnu.org/licenses/gpl-3.0
https://pypi.org/project/todonepy
https://pypi.org/project/todonepy
https://travis-ci.org/rbpatt2019/ToDonePy
https://todonepy.readthedocs.io/en/latest/?badge=latest
https://codecov.io/gh/rbpatt2019/ToDonePy
https://pyup.io/repos/github/rbpatt2019/ToDonePy/
https://github.com/rbpatt2019/ToDonePy/
https://ToDonePy.readthedocs.io/
https://github.com/rbpatt2019/ToDonePy/

ToDonePy, Release 4.0.9

1.3 Installation

This project has been released on PyPI, so it can be installed with pip:

pip install -U ToDonePy

Alternatively, you can install the project manually by cloning the repo, and using the included Makefile.

git clone https://github.com/rbpatt2019/ToDonePy/
make install

If you would like to contribute to development, the install instructions are slightly different. Please see the section on
contributing.

1.4 Usage

1.4.1 The base command to

The base command to has a few useful features of its own. To see what version of the command you are using, call:

to --version

As with any good command-line tool, you can get some basic help by calling:

to --help

You can get help on any subcommand by calling –help after that subcommand. For example, to get help with to doing,
call:

to doing --help

Under the hood, to creates a Filer object that holds the information on the file you use for tracking you’re TODOs. If
you don’t specify a file to use, it will default to $HOME/.TODO.tsv. If you would like to specify a different file to use,
than call the command with the –file/-f flag like so:

to --file /path/to/your/TODO.tsv subcommand

Note: If you plan to use a file other than the default, I recommend setting it by creating the environmental variable,
TODO_LIST.

Regardless of whether you use the default or not, calling to with any of the subcommands - do, doing, or done - will
check to see if the file exists. If it does exist, to then pass the path on to the subcommand. If it doesn’t exist, then to
creates an empty file which it then passes on to the subcommand.

As a final note, it is worth emphasising that the contex object is only created when to is invoked with a subcommand.
So, after a clean install, calling to –help or to –version will NOT create your TODO.tsv file, even if you pass the –file/-f
flag. However, call to do, and it will pop into existence.

2 Chapter 1. ToDonePY - A basic command-line tast manager

https://pypi.org
https://github.com/rbpatt2019/ToDonePy
https://todonepy.readthedocs.io/en/latest/contributing.html#contributing

ToDonePy, Release 4.0.9

1.4.2 Adding new tasks with to do

To begin tracking your TODOs, call the command as follows:

to do rank tasks

to is the base command. It must be invoked to use any part of the tool. The do subcommand is how you add tasks to
your TODO.tsv. After to do, there are two mandatory arguments: rank and tasks. The first argument is rank. rank
should be a number indicating how important this task is. 1 is very important, 2 less so, etc. Though nothing explicitly
bans you from using as many ranks as you want, I would reccomed using 3 for high, medium, and low priority.

The second argument is tasks. Here, specify what it is you need to do. If your task takes more than one word to
describe, then you need to include it in quotes. tasks supports an indefinite number of arguments, from 1 to as many
as you want.

Note: All tasks specified will be added at the same rank, so only combine tasks you want to give the same priority.

So, if you wanted to remind yourself to write an abstract for that paper you have been delaying and to email your boss,
call:

to do 1 'Write my abstract' 'Email boss'

This will create TODO.tsv if it does not already exist, and add ‘Write my abstract’ and ‘Email boss’, both with a rank
of one, to TODO.tsv. to do also logs the date and time the task was added, so that you always know how old a task is.

Sometimes, you want to sort your tasks as you add them. You can do that with the –sort/-s option. This specifies how
to sort your list after a new task is added. It must be one of: [rank, date, both, none]. both sorts by rank and then date,
and none does not sort, simply appending tasks to the end of your list. It defaults to none, on the grounds its better
not to do something unless you ask. Explicit is better than implicit, as they say. If you just wanted to sort by date after
adding a new task, then you could call:

to --sort do date 1 'Important work'

Note: –sort follows the root command to as it directly impacts the file and is an option accessible to all subcommands.

1.4.3 Keeping track of tasks with to doing

Once you have added some TODOs to your list, you need to make sure you stay on top of them. To see what needs to
be done, call:

to doing

This should echo the 5 tasks at the top of your TODO.tsv to the terminal.

You can specify how to sort your tasks by passing the –sort/-s flag with one of: [rank, date, both, none]. It defaults
to none, thus preserving the order in your TODO.tsv. Any call to sort will also change the order currently in your
TODO.tsv, not just the order they are echoed.

Also, specifying the –number/-n flag will let you change how many tasks are returned, and it defaults to 5. So, if you
want to return 3 tasks sorted by rank, call:

to -s rank doing -n 3

1.4. Usage 3

https://www.python.org/dev/peps/pep-0020/

ToDonePy, Release 4.0.9

Note: Remember, -s is a root command option!

Maybe you prefer a graphic reminder instead of echoing in the terminal - I find this useful for spawning reminders
while I am coding in VIM. ToDonePy has that covered, too! Just call:

to doing --reminder

to trigger a notification window. By default, it stays up for 5 seconds. Currently, you can not set the time, though that’s
in the works!

Note: The graphic flag makes a system call to notify-send. If you don’t have that installed, the command will fail. It
should be installed on most Linux systems, though.

Sometimes, you might want to correct an error, change a priority, or in some way edit yout TODO.tsv. In these cases,
you can call to doing in editor mode:

to doing --edit

This will open TODO.tsv in your system editor. Where you would see something like below, if you have been following
along:

ID Rank Date Task
1 1 YYYY-MM-DD HH:MM Write my abstract
2 1 YYYY-MM-DD HH:MM Email boss
3 1 YYYY-MM-DD HH:MM Important work

Nothing fancy, just a plain tsv with ID in the first column, rank in the second column, the date/time of addition in the
third, and task in the fourth. Now, you can make all the changes you want, then save and close the file to return to the
command line.

Calling –edit will trump any calls to sort or number made in the same command.

This call opens the default editor on your system, usually defined by the environmental variable EDITOR for Linux
systems. If this variable is undefined, then it defaults to VIM - which should be your choice anyways! :P If that
command is not found, then it will thros an OSError.

1.4.4 Completing your tasks with to done

After the end of a productive work session, you have completed a task from your list. Boom! Time well spent. To
remove it from your TODO.tsv, call:

to done tasks

As with to do, to done suports an indefinite number of tasks, as long as all multi-word tasks are enclosed in quotes.
For example, if you emailed your boss that finished abstract, then you can remove those tasks like so:

to done 'Write my abstract' 'Email boss'

If to done finds these tasks in your TODO.tsv, it’ll remove them! If it can’t find the tasks, it will print a message saying
which ones couldn’t be removed.

Under the hood, to done creates a temp file, then performs a string match to each line of your TODO.tsv. If a perfect
match to ‘’task” is not in a line, that line is written to the temp file. If ‘’task” is in a line, that line is skipped. This

4 Chapter 1. ToDonePY - A basic command-line tast manager

ToDonePy, Release 4.0.9

way, the temp file ends up containing only those tasks that aren’t completed. Once every line is checked, the temp file
replaces TODO.tsv with its contents. Task deleted!

Warning: If two different tasks contain the same text, they will both be deleted!

1.5 Known Bugs

• Test hang when testing

1.6 Recent Changes

Please see the CHANGELOG

1.7 Next Steps

• Addition of TODOs from file parsing

• Support removal of tasks by task ID number

• Full, OS-independent graphic interface

1.5. Known Bugs 5

https://github.com/rbpatt2019/ToDonePy/blob/master/CHANGELOG.rst

ToDonePy, Release 4.0.9

6 Chapter 1. ToDonePY - A basic command-line tast manager

CHAPTER

TWO

TODONEPY COMMAND-LINE INTERFACE (CLI)

2.1 Root Command: to

The root to command

The root command provides several options.

-s/–sort allows you to specify how to sort added or returned tasks. Bear in mind that this sorts the underlying file! It
defaults to ‘none’ - best not to do anything unless you need to!

-f/file allows you to specify where to store your TODOs. If you don’t specify, it defaults to ~/.todo.tsv and will create
the file if it doesn’t exists. If you want to keep your file elsewhere, you can specify that with the env var TODO_FILE

Like all good CLIs, -v/–version returns the version while -h/–help help for the root command. Help for the subcom-
mands can be found by calling -h after a subcommand, like this: to do -h.

commands.to.__version__
The version number, pulled from the pyproject.toml file

Type str

commands.to.__todo__
The Filer object containing the TODOs. It first checks to see if the env var TODO_FILE is set. If it is, it looks
there. If not, it defaults to ~/.todo.tsv. A hidden file is used to prevent clutter.

Type Filer

2.2 Sub-Command: do

subcommands.do.do(args: argparse.Namespace)→ None
Add some tasks to your list

do supports an unlimited number of tasks, but requires that tasks of more than 1 word in length be enclosed
in quotes. Single or double are fine - use whichever! To keep track of how long tasks have been on the list, a
timestamp of the form %y-%m-%d %H:%M is also added.

7

ToDonePy, Release 4.0.9

Notes

All tasks added at the same time will be added at the same rank. If you need to add multiple tasks at different
ranks, you must call to do multiple times.

Parameters

• args (argparse.Namespace) – Arguments forwarded from the CLI. For this subcommand,
this includes:

• args.file (Filer) – The TODO file to add to. From the root to command

• args.rank (int) – The importance to assign the new tasks.

• args.sort (Literal[“rank”, “date”, “both”, “none”]) – How to sort new tasks added to the
list. From the root to command

• args.tasks (List[str]) – The task(s) to add to your list

Returns None – However, a confirmation message will be echoed to the terminal

Examples

$ to -s rank do 2 “An example task” “I’m very busy”

2.3 Sub-Command: doing

subcommands.doing.doing(args: argparse.Namespace)→ None
See tasks in your list

Notes

–edit opens whatever editor is specified by your EDITOR env var. If one is not set, it will default to Vim.

Currently, –reminder has a dependency on notify-send. If this command is absent from your system, it will failt

Parameters

• args (argparse.Namespace) – Args passed from argparse. For this subcommand, these in-
clude:

• args.file (Filer) – The TODO file to echo. Derived from the root to command

• args.sort (Literal[‘both’, ‘none’, rank’, ‘date’]) – How to sort echoed tasks. Derived from
the root to command

• args.number (int) – How many tasks to return

• args.reminder (bool) – Whether to use notify-send to create a pop-up

• args.edit (bool) – Whether to laucn an editor with your TODO file

Returns None

8 Chapter 2. ToDonePy command-line interface (CLI)

ToDonePy, Release 4.0.9

Example

$ to doing -n 3

2.4 Sub-Command: done

The done subcommand for the to main command

subcommands.done.done(args: argparse.Namespace)→ None
Remove a task to your list

This command uses the supplied tasks to look for matches in your TODO list. A helpful message lets you know
if the task(s) was(were) found and deleted.

Note: If your task contains more than one word, then each task must be enclosed in quotes. Otherwise, the CLI
treats each word as a task. Also note that if multiple lines match a task, they will ALL be deleted.

Parameters

• args (argparse.Namespace) – Arguments forwarded from the CLI. For this subcommand,
this includes:

• args.file (Filer) – The TODO file to be searched. From the root to command

• args.task (List[str]) – The list of tasks to be deleted

Returns None – Though a message will be echoed letting you know if the task(s) was(were) deleted
successfully.

Example

$ to done ‘An example’ ‘Is always helpful’

2.4. Sub-Command: done 9

ToDonePy, Release 4.0.9

10 Chapter 2. ToDonePy command-line interface (CLI)

CHAPTER

THREE

TODONEPY HELPERS

3.1 ToDonePy Helper Functions

3.1.1 Function: itemsetter

helpers.itemsetter.itemsetter(*items: int)→ Callable[[List, Any], None]
Return a callable object that sets item from its operand

This is essentially the opposite of operator.itemgetter. If only one position is specified, the resulting callable
will set that item. If multiple positions are specified, it sets all items

Parameters *items (int) – The indices to be set. Remember, Python is 0-indexed

Returns Callable[[List, Any], None] – A function that will set the indices specified in items to a
given value.

Examples

>>> x = ['a', 'b', 'c']
>>> f = itemsetter(2)
>>> f(x, 'z')
>>> print(x)
['a', 'b', 'z']

3.1.2 Function: external_command

helpers.external_command.external_command(args: List[str]) → subpro-
cess.CompletedProcess

Make a generic command line call

Any command line call can be made. Pass the respective components as individual strings. Roughly speaking,
anywhere there is a space, break it into a new component. See the documentation on subprocess.run for advanced
use cases.

Note: If run in a situation where the user was providing a dynamic input, there are obvious security risks. In
the app, however, the user cannot provide their own input, which I believe sufficiently mitigates the risk in this
use case. Obviously, if you adopt and use this function elsewhere, take care to check your inputs!

Parameters *args (List[str]) – The parts of the external command

11

https://docs.python.org/3.7/library/operator.html
https://docs.python.org/3.7/library/subprocess.html#subprocess.Popen

ToDonePy, Release 4.0.9

Returns subprocess.CompletedProcess – If successful. This contains a number of useful attributes,
including returncode and stdout.

Raises

• OSError – If unsuccessful. This will be thrown if the command found in args[0] cannot
be found on the OS

• subprocess.CalledProcessError – If the called command returns a non-zero exit
status

Examples

The results of a successful command ccan be queried like so:

>>> results = external_command(['echo', 'hello'])
>>> results.returncode
0

3.2 The Filer Class

class helpers.filer.Filer(path: pathlib.Path, create: bool = True, delimiter: str = '\t')
Bases: object

A class for gracefully handling file interactions with delimited data

Designed particularly for passing context in a CLI, it is a thin wrapper for many common file I/O actions,
including reading, writing (both lines and columns), and deleting.

append(rows: List[List[str]])→ None
Appends contents of rows to self.path

Note: This will not over-write the contents of the file, mirroring the modes of open()

Parameters rows (List[List[str]]) – A list of strings to write to self.path.

Returns None

Examples

>>> example.append([['f','g', 'h'], ['i', 'j', 'k']])

delete(contains: str)→ bool
Deletes all lines from self where contains in line

Parameters contains (str) – String to match for line deletion

Returns bool – True if successulf, false otherwise

12 Chapter 3. ToDonePy Helpers

https://docs.python.org/3.7/library/functions.html#open

ToDonePy, Release 4.0.9

Example

>>> example.delete('j')
True

read()→ List[List[str]]
Read the lines of self.path

Note: Reads in all lines, so will suffer on large files

Parameters None

Returns List[List[str]] – A list of lines where each line is a list of column values

Examples

>>> example.read()
[['ID', 'Rank', 'Date', 'Task'], ['f', 'g', 'h']]

sort(cols: List[int], header: bool = False)→ None
Sort the contents of self.path by columns

Parameters

• cols (List[int]) – List of column indices indicating what to sort by. Remember, Python is
0-indexed

• header (bool) – Whether or not row 0 is a header. If True, row 0 is skipped for sorting

Returns None

Example

>>> example.sort([1, 2], header=False)

write(rows: List[List[str]])→ None
Writes contents of rows to self.path.

Warning: If the file already has content, that will be overwritten! This mirrors the modes used by
open()

Parameters rows (List[List[str]]) – A list of strings to write to self.path. rows[0] represents
line 1, and rows[0][0] is line 1, column 1.

Returns None

3.2. The Filer Class 13

https://docs.python.org/3.7/library/functions.html#open

ToDonePy, Release 4.0.9

Examples

>>> example.write([['a', 'b', 'c']])

write_col(col: List[str], index: int = 0)→ None
Writes contents of col to self.path at specified index

Warning: If the column already has content, that will be overwritten! This mirrors the modes used
by open()

Parameters

• col (List[str]) – A list of strings to write to self.path. This should be the same length as
self.length

• index (int) – Which column to write at. Remember, Python is 0-indexed.

Returns None

Raises IndexError – When col has more or less items than self.length

Examples

>>> example.write_col(['d'], index=2)

14 Chapter 3. ToDonePy Helpers

https://docs.python.org/3.7/library/functions.html#open

CHAPTER

FOUR

TESTING

4.1 Configurations

conftest.doctest_filer_example(doctest_namespace: Dict[str, helpers.filer.Filer], tmp_path:
pathlib.Path)→ None

Fixture for instantiating an example Filer for use in doctests

Parameters

• doctest_namespace (Dict[str, Filer]) – pytest.fixture holding variables to be used in doctests

• tmp_path (Path) – pytest.fixture containing a temporary file path

Returns None

conftest.tmp_file(tmp_path: pathlib.Path)→ helpers.filer.Filer
Fixture for automating setup of files

Parameters tmp_path (Path) – pytest.fixture. Where to create the file

Returns Path – An instantiated tsv file

4.2 Test Modules

4.2.1 Testing the do sub-command

test_do.test_to_do(sort: str, expected: str, tmp_file: helpers.filer.Filer, capsys)
Check that tasks are appropriately added and sorted

Parametrized to check various calls to the –sort flag

4.2.2 Testing the doing sub-command

test_doing.test_to_doing(sort: str, expected: str, tmp_file: helpers.filer.Filer, capsys)
Run to doing with existing custom file

Parametrised to test situations where –sort is/isn’t passed

test_doing.test_to_doing_custom_file_edit_flag(tmp_file: helpers.filer.Filer, capsys)
Run to doing with the edit flag

test_doing.test_to_doing_custom_file_graphic_flag(tmp_file, capsys)
Run to doing with the –reminder flag

15

ToDonePy, Release 4.0.9

4.2.3 Testing the done sub-command

test_done.test_to_done(tmp_file: helpers.filer.Filer, capsys)
Check that task are appropriately deleted from the TODO file

4.2.4 Testing the Filer class

test_filer.test_Filer_append_existing_file(tmp_file: helpers.filer.Filer)→ None
Run Filer to append to an existing file

test_filer.test_Filer_create(tmp_path: pathlib.Path, create: bool, expected:
List[List[Union[None, str]]])→ None

Run Filer to read a file that does not exist

This is parametrize to test that if fails if create = False but passes when create = True

test_filer.test_Filer_delete_existing_file(tmp_file: helpers.filer.Filer, to_del: str, ex-
pected: List[List[str]])→ None

Run Filer to delete a line from an existing file

This is parametrised to check conditions where a line is not deleted

test_filer.test_Filer_read_existing_file(tmp_file: helpers.filer.Filer)→ None
Run Filer to read an existing file

test_filer.test_Filer_sort_existing_file(tmp_file: helpers.filer.Filer, header: bool, ex-
pected: List[List[str]])→ None

Run Filer to sort an existing file

This is parametrised to check that headers are treated properly

test_filer.test_Filer_write_col_error(tmp_file: helpers.filer.Filer)→ None
Check that Filer.write_col raises an IndexError if col is the wrong length

test_filer.test_Filer_write_existing_file(tmp_file: helpers.filer.Filer)→ None
Run Filer to write to an existing file

4.2.5 Testing Helper Functions

test_external_command.test_ec_OSError()→ None
Test external_command raise an OSError for Command Not Found

test_external_command.test_ec_ProcessError()→ None
Test external_command raise an CalledProcessError when has a non-0 status

test_external_command.test_ec_successful()→ None
Test a basic command call with external_command

Checks that a successful call returns an exit code of 0 and the expected output

test_itemsetter.test_itemsetter()→ None
Test itemsetter with basic inputs

Returns None

16 Chapter 4. Testing

CHAPTER

FIVE

FOR CONTRIBUTORS

Comments, criticisms, and concerns are always welcome! If you would like to help with development, please follow
the steps below. This project depends on Poetry for all things dependency and development related. Make sure it’s
installed, or else all this will fail. It’s an awesome tool, I highly recommend you check it out!

5.1 Clone the repo

git clone https://github.com/rbpatt2019/ToDonePy.git
cd ToDonePy

5.2 Make a new environment

Follow your own protocol! I use pyenv for all my env/venv control, so I would do:

pyenv virtualenv ToDonePy
pyenv local ToDonePy

Regardless of how you do it, run the following once its created:

make develop

5.3 Start developing

Checkout the Makefile for lots of useful commands for testing, linting, and many others! Before committing any
changes, I’d strongly recommend creating a new branch:

git checkout -b new_feature

17

https://poetry.eustace.io
https://github.com/rbpatt2019/ToDonePy/blob/master/Makefile

ToDonePy, Release 4.0.9

5.4 And contribute!

Once you’re ready to share your changes, fork the repository on github. Then, add it as a remote to the repo and push
the changes there.

git remote add origin https://github.com/YOUR_USER/ToDonePy.git
git push origin new_feature

Finally, open a pull request, and I’ll review it as soon as I can!

If you’re a command line nut like me, this can all be done from the command line using hub, a CLI for interacting
with the github api. See their repo for installation instructions. Instead of the above, do:

hub fork --remote-name=origin
git push origin new_feature
hub pull-request

This will fork the repo, push your changes, and create a pull request, all without leaving the command line!

18 Chapter 5. For contributors

https://github.com/github/hub
https://github.com/github/hub

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

19

ToDonePy, Release 4.0.9

20 Chapter 6. Indices and tables

PYTHON MODULE INDEX

c
commands.to, 7
conftest, 15

h
helpers.external_command, 11
helpers.filer, 12
helpers.itemsetter, 11

s
subcommands.do, 7
subcommands.doing, 8
subcommands.done, 9

t
test_do, 15
test_doing, 15
test_done, 16
test_external_command, 16
test_filer, 16
test_itemsetter, 16

21

ToDonePy, Release 4.0.9

22 Python Module Index

INDEX

Symbols
__todo__ (in module commands.to), 7
__version__ (in module commands.to), 7

A
append() (helpers.filer.Filer method), 12

C
commands.to

module, 7
conftest

module, 15

D
delete() (helpers.filer.Filer method), 12
do() (in module subcommands.do), 7
doctest_filer_example() (in module conftest),

15
doing() (in module subcommands.doing), 8
done() (in module subcommands.done), 9

E
external_command() (in module

helpers.external_command), 11

F
Filer (class in helpers.filer), 12

H
helpers.external_command

module, 11
helpers.filer

module, 12
helpers.itemsetter

module, 11

I
itemsetter() (in module helpers.itemsetter), 11

M
module

commands.to, 7
conftest, 15
helpers.external_command, 11
helpers.filer, 12
helpers.itemsetter, 11
subcommands.do, 7
subcommands.doing, 8
subcommands.done, 9
test_do, 15
test_doing, 15
test_done, 16
test_external_command, 16
test_filer, 16
test_itemsetter, 16

R
read() (helpers.filer.Filer method), 13

S
sort() (helpers.filer.Filer method), 13
subcommands.do

module, 7
subcommands.doing

module, 8
subcommands.done

module, 9

T
test_do

module, 15
test_doing

module, 15
test_done

module, 16
test_ec_OSError() (in module

test_external_command), 16
test_ec_ProcessError() (in module

test_external_command), 16
test_ec_successful() (in module

test_external_command), 16
test_external_command

module, 16

23

ToDonePy, Release 4.0.9

test_filer
module, 16

test_Filer_append_existing_file() (in
module test_filer), 16

test_Filer_create() (in module test_filer), 16
test_Filer_delete_existing_file() (in

module test_filer), 16
test_Filer_read_existing_file() (in mod-

ule test_filer), 16
test_Filer_sort_existing_file() (in mod-

ule test_filer), 16
test_Filer_write_col_error() (in module

test_filer), 16
test_Filer_write_existing_file() (in mod-

ule test_filer), 16
test_itemsetter

module, 16
test_itemsetter() (in module test_itemsetter), 16
test_to_do() (in module test_do), 15
test_to_doing() (in module test_doing), 15
test_to_doing_custom_file_edit_flag()

(in module test_doing), 15
test_to_doing_custom_file_graphic_flag()

(in module test_doing), 15
test_to_done() (in module test_done), 16
tmp_file() (in module conftest), 15

W
write() (helpers.filer.Filer method), 13
write_col() (helpers.filer.Filer method), 14

24 Index

	ToDonePY - A basic command-line tast manager
	ToDonePy command-line interface (CLI)
	ToDonePy Helpers
	Testing
	For contributors
	Indices and tables
	Python Module Index
	Index

